RSS Daily tech news
  • Stanford discovers an extraordinary crystal that could transform quantum tech
    Stanford scientists found that strontium titanate improves its performance when frozen to near absolute zero, showing extraordinary optical and mechanical behavior. Its nonlinear and piezoelectric properties make it ideal for cryogenic quantum technologies. Once overlooked, this cheap, accessible material now promises to advance lasers, computing, and space exploration alike.
  • MIT quantum breakthrough edges toward room-temp superconductors
    MIT scientists uncovered direct evidence of unconventional superconductivity in magic-angle graphene by observing a distinctive V-shaped energy gap. The discovery hints that electron pairing in this material may arise from strong electronic interactions instead of lattice vibrations.
  • Physicists uncover hidden “doorways” that let electrons escape
    Scientists at TU Wien found that electrons need specific “doorway states” to escape solids, not just energy. The insight explains long-standing anomalies in experiments and unlocks new ways to engineer layered materials.
  • This artificial leaf turns pollution into power
    Cambridge researchers have engineered a solar-powered “artificial leaf” that mimics photosynthesis to make valuable chemicals sustainably. Their biohybrid device combines organic semiconductors and enzymes to convert CO₂ and sunlight into formate with high efficiency. It’s durable, non-toxic, and runs without fossil fuels—paving the way for a greener chemical industry.
  • Scientists just found a way to grow diamonds without heat or pressure
    A University of Tokyo team has turned organic molecules into nanodiamonds using electron beams, overturning decades of assumptions about beam damage. Their discovery could transform materials science and deepen understanding of cosmic diamond formation.
  • MIT physicists just found a way to see inside atoms
    MIT researchers have devised a new molecular technique that lets electrons probe inside atomic nuclei, replacing massive particle accelerators with a tabletop setup. By studying radium monofluoride, they detected energy shifts showing electrons interacting within the nucleus. This breakthrough could help reveal why matter dominates over antimatter in the universe.

Resistor color code – Online tool

by Florius
Illustration of resistors with color bands and a reading example (332M ± 0.5%). The text reads "Resistor color code Online tool" and shows a DIP chip, emphasizing electronics utility and learning.

A resistor is a fundamental two-terminal component used in countless electronic devices to limit or regulate electric current. Resistors are often marked with color bands to indicate their values. Typically, these resistors feature four or five color bands. Understanding how to read these color codes is essential for determining the resistor’s value. In this article, we’ll explore what resistor color codes are, how to read them, and provide a tool to help you find resistor values using color codes.

The figure below shows a resistor with four color bands on it: the first two bands represent digits, the third represents the multiplier, and the fourth represents the tolerance. The first two digits can be concatenated together and further multiplied. In the example below, this would involve concatenating 5 and 6 to get 56, then multiplying by 10, resulting in 560 Ohms. Notice the gap between the multiplier and tolerance band, this is an indication of which end is which.

A similar concept applies to a five-band resistor, where an extra digit allows for more precise resistance values. Scroll down to the chapter on 4-band or 5-band resistor color codes for the interactive tool (which only works on a desktop).

Resistor color coding. The first two bands represent the digits, the third is the multiplier and the fourth is the tolerance.

If you do not know which end is which, here are some tips that might help you:

  • Try to fill it in from both ends, and look up in the table below (third section) to see if it fits any of the predetermined values in the E-series.
  • Gold or silver is a very common tolerance color, look out for that color at the ends.
  • There is normally a larger gap between the multiplier & tolerance bands than in between the other bands, look out for that.
  • If there are only 3 bands visible, you can still obtain the value, but it means the tolerance might be 20% (only for very cheap resistors).

Resistor code: 4-band

To use the interactive resistor color code tool, click on the colors for the first, second, and third bands to set the digits and multiplier. Then, click the color for the fourth band to set the tolerance. The tool will display colored bands on the resistor and automatically calculate the resistance and tolerance.

The resistance is:
Color
1st
2nd
Multiplier
Tolerance
Color
1st
2nd
Mult.
Tol.
Black
Brown
Red
Orange
Yellow
Green
Blue
Purple
Grey
White
Gold
Silver
None
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
1
10
100
1K
10K
100K
1M
10M
100M
1G
0.1
0.01
1%
2%
0.5%
0.25%
0.1%
0.05%
5%
10%

Resistor code: 5-band

To use the interactive resistor color code tool, click on the colors for the first, second, and third bands to set the digits and multiplier. Then, click the color for the fourth band to set the tolerance. The tool will display colored bands on the resistor and automatically calculate the resistance and tolerance.

The resistance is:
Color
1st
2nd
3rd
Multiplier
Tolerance
Color
1st
2nd
3rd
Mult.
Tol.
Black
Brown
Red
Orange
Yellow
Green
Blue
Purple
Grey
White
Gold
Silver
None
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
1
10
100
1K
10K
100K
1M
10M
100M
1G
0.1
0.01
1%
2%
0.5%
0.25%
0.1%
0.05%
5%
10%

Summary of EIA Preferred or Standard Resistor Value Series

Resistor values are organized into sets of preferred or standard values, which follow a logarithmic sequence to ensure appropriate spacing relative to component tolerance. Tolerances typically range from ±20% to ±1%, with more accurate options available at higher cost. Standard values facilitate component selection across manufacturers, streamlining sourcing and reducing costs. In the table below I show the 4 most used series.

E SeriesTolerance (Sig Figs)Number of values in each decade
E3>20%3
E620%6
E1210%12
E245%
[normally also available in 2% tolerance]
24

The E12 series resistor values are also widely used within the industry. They provide a wider range of common resistor values that can be used in electronic circuit designs and this can be essential for many analogue designs.

E12 Standard Resistor Series
1.01.21.5
1.82.22.7
3.33.94.7
5.66.88.2
Florius

Hi, welcome to my website. I am writing about my previous studies, work & research related topics and other interests. I hope you enjoy reading it and that you learned something new.

More Posts

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.