© All rights reserved. Powered by Florisera.

RSS Daily tech news
  • Spinning, twisted light could power next-generation electronics
    Researchers have advanced a decades-old challenge in the field of organic semiconductors, opening new possibilities for the future of electronics. The researchers have created an organic semiconductor that forces electrons to move in a spiral pattern, which could improve the efficiency of OLED displays in television and smartphone screens, or power next-generation computing technologies such […]
  • Breakthrough nano-spring technology boosts battery durability and energy density
    Scientists improved battery durability and energy density with a nano-spring coating.
  • Scientists discover smart way to generate energy with tiny beads
    Researchers have discovered a new method to generate electricity using small plastic beads. By placing these beads close together and bringing them into contact, they generate more electricity than usual. This process, known as triboelectrification, is similar to the static electricity produced when rubbing a balloon against hair.
  • Building bridges in physics
    Researchers show that Cartan's First Structure Equation, which relates to edge and screw dislocations in crystal lattices, can be recast in the same form as a basic mathematical formula that governs the behavior of electric currents and magnetic fields. This work can help make new concepts more understandable by employing more familiar frameworks.
  • 'Nanodot' control could fine-tune light for sharper displays, quantum computing
    Newly achieved precise control over light emitted from incredibly tiny sources, a few nanometers in size, embedded in two-dimensional materials could lead to remarkably high-resolution monitors and advances in ultra-fast quantum computing, according to an international team.
  • Super sapphire resists scratches, glare, fog and dust
    Researchers have discovered techniques to bestow superpowers upon sapphire, a material that most of us think of as just a pretty jewel.

The Physics and Technology of Intrinsic Semiconductors

Semiconductors are materials with electrical properties between metals and insulators, governed by their band structure. The valence and conduction bands define electron movement, with a band gap influencing conductivity. Intrinsic semiconductors, free of impurities, require energy to excite electrons into the conduction band, enabling current flow. Carriers, including electrons and ...

Majoranas: The Next Step in Quantum Computing

Microsoft’s Azure Quantum team is developing quantum chips using topological qubits, leveraging Majorana zero modes for stability. Their research on superconducting nanowires could accelerate quantum computing advancements. This article explains Majorana physics, its role in quantum systems, and Microsoft’s roadmap for scalable quantum computing, offering insights into this groundbreaking development.

The Physics and Technology of Metals

Understanding the conductivity of metals involves exploring their high electron mobility, Ohm’s law, and quantum mechanical models like Drude and Sommerfeld. This article discusses how metals conduct electricity, the role of energy bands, and how electron interactions shape conductivity, highlighting key concepts like drift velocity, Fermi energy, and relaxation time.

Antiferromagnetic Spin Configuration – Hematite

Explore the fascinating world of antiferromagnetic resonance, where materials like hematite and Yttrium Orthoferrite reveal the hidden dynamics of opposing magnetic moments. Dive into the science behind these unique materials, and discover how their properties open new possibilities in fields such as spintronics and data storage.
Featured image of the post on Electron Paramagnetic Resonance spectroscopy

Electron Paramagnetic Resonance spectroscopy

Electron paramagnetic resonance (EPR) spectroscopy, also called electron spin resonance (ESR), is a technique for studying materials with unpaired electrons, such as organic and inorganic radicals, and transition metal complexes. It functions by detecting magnetic properties of electrons. This post covers the science of EPR, its key components, real-world applications, ...

Exchange interaction

Electrons prefer parallel spins due to the quantum mechanical concept of exchange energy, which lowers their system's total energy. This preference is a result of the Pauli exclusion principle and the antisymmetric nature of fermion wavefunctions, reducing Coulomb repulsion and stabilizing the system in quantum mechanical interactions.
Featured image of the introduction to skyrmions

An introduction to Skyrmions

Skyrmions are a class of topological solitons discovered by Tony Skyrme in the 1960s, he used this concept to describe how subatomic particles exist as discrete entities in a nuclear field. The original idea was overshadowed by other theories, however, the same concept is now used to describe a phenomena ...

The Bohr atom model

The Bohr model revolutionized our understanding of the atom. It proposed electrons exist in fixed energy levels, challenging classical physics. This explained the hydrogen spectrum and laid the foundation for quantum mechanics.
Categories
Instagram
Visual Portfolio, Posts & Image Gallery for WordPress