RSS Daily tech news
  • An old jeweler’s trick could change nuclear timekeeping
    A team of physicists has discovered a surprisingly simple way to build nuclear clocks using tiny amounts of rare thorium. By electroplating thorium onto steel, they achieved the same results as years of work with delicate crystals — but far more efficiently. These clocks could be vastly more precise than current atomic clocks and work […]
  • Critical minerals are hiding in plain sight in U.S. Mines
    Researchers found that U.S. metal mines already contain large amounts of critical minerals that are mostly going unused. Recovering even a small fraction of these byproducts could sharply reduce dependence on imports for materials essential to clean energy and advanced technology. In many cases, the value of these recovered minerals could exceed the value of […]
  • New state of quantum matter could power future space tech
    A UC Irvine team uncovered a never-before-seen quantum phase formed when electrons and holes pair up and spin in unison, creating a glowing, liquid-like state of matter. By blasting a custom-made material with enormous magnetic fields, the researchers triggered this exotic transformation—one that could enable radiation-proof, self-charging computers ideal for deep-space travel.
  • Miracle material’s hidden quantum power could transform future electronics
    Researchers have directly observed Floquet effects in graphene for the first time, settling a long-running scientific debate. Their ultrafast light-based technique demonstrates that graphene’s electronic properties can be tuned almost instantaneously. This paves the way for custom-engineered quantum materials and new approaches in electronics and sensing.
  • Century-old catalysis puzzle cracked by measuring a fraction of an electron
    Scientists have directly measured the minuscule electron sharing that makes precious-metal catalysts so effective. Their new technique, IET, reveals how molecules bind and react on metal surfaces with unprecedented clarity. The insights promise faster discovery of advanced catalysts for energy, chemicals, and manufacturing.
  • Stanford discovers an extraordinary crystal that could transform quantum tech
    Stanford scientists found that strontium titanate improves its performance when frozen to near absolute zero, showing extraordinary optical and mechanical behavior. Its nonlinear and piezoelectric properties make it ideal for cryogenic quantum technologies. Once overlooked, this cheap, accessible material now promises to advance lasers, computing, and space exploration alike.
Educational slide introducing the use of hardware timers in the PIC16F877A microcontroller. The left side features a stopwatch icon and the question “Alarm, Timers, how does it work?”, while the right side shows the microcontroller and MPLAB X IDE logo. The image sets the stage for learning about Timer0, Timer1, and Timer2 functionality.

PIC Microcontrollers Timers

In this tutorial, we will learn what are "Timers"; we will explain this with examples using the Microcontroller PIC16F877A. For this tutorial is may be helpful to understand the basics of turning an LED on and off, which is explained in one of my previous tutorials on LEDs. In this ...
Educational graphic showing how to interface 4x3 matrix keypads with a PIC16F877A microcontroller. The image includes two physical keypads, a schematic layout of the 4x3 keypad connections, the PIC16F877A chip, and the MPLAB X IDE logo. Text reads "Interfacing PIC16F877A with 4x3 keypads."

Interfacing 4×3 keypads with PIC16F877A

In this tutorial, we will provide an overview of the 4x3 membrane keypad. The keypad serves as a reliable and budget-friendly tool for having inputs in your project. Understanding how to interface with the keypad will prove useful in future projects that require menu selection or similar inputs. Our guide ...
Categories
Instagram