RSS Daily tech news
  • The invisible plastic threat you can finally see
    Researchers in Germany and Australia have created a simple but powerful tool to detect nanoplastics—tiny, invisible particles that can slip through skin and even the blood-brain barrier. Using an "optical sieve" test strip viewed under a regular microscope, these particles reveal themselves through striking color changes.
  • Scientists watch an atomic nucleus flip in real time
    Scientists at Delft University of Technology have managed to watch a single atomic nucleus flip its magnetic state in real time. Using a scanning tunneling microscope, they indirectly read the nucleus through its electrons, finding the nuclear spin surprisingly stable for several seconds. This “single-shot readout” breakthrough could pave the way for manipulating atomic-scale quantum […]
  • A simple metal could solve the world’s plastic recycling problem
    Scientists at Northwestern University have developed a groundbreaking nickel-based catalyst that could transform the way the world recycles plastic. Instead of requiring tedious sorting, the catalyst selectively breaks down stubborn polyolefin plastics—the single-use materials that make up much of our daily waste—into valuable oils, waxes, fuels, and more.
  • A strange quantum effect could power future electronics
    Rice University physicists confirmed that flat electronic bands in kagome superconductors aren’t just theoretical, they actively shape superconductivity and magnetism. This breakthrough could guide the design of next-generation quantum materials and technologies.
  • Room-temperature quantum breakthrough freezes motion without cooling
    ETH Zurich scientists have levitated a tower of three nano glass spheres using optical tweezers, suppressing almost all classical motion to observe quantum zero-point fluctuations with unprecedented precision. Achieving 92% quantum purity at room temperature, a feat usually requiring near absolute zero, they have opened the door to advanced quantum sensors without costly cooling.
  • Tiny gold “super atoms” could spark a quantum revolution
    Scientists have found that microscopic gold clusters can act like the world’s most accurate quantum systems, while being far easier to scale up. With tunable spin properties and mass production potential, they could transform quantum computing and sensing.

Pin diagram of the PIC16F877A microcontroller

by Florius
Illustration showing the 40-pin layout of the PIC16F877A microcontroller. Each pin is labeled with its corresponding port (e.g., RA0, RB7), alternate functions (such as ADC inputs, UART, SPI, I2C), and power supply pins (VDD, VSS). Used to guide hardware interfacing in MPLAB X IDE projects.

Pin diagram

The important pins

For accurate and dependable information, referring to the datasheets provided by Microchip Technology is advisable; these documents can be accessed here. Additionally, a brief overview of the pin diagram is recommended, detailing their functionalities and locations. Let’s begin by outlining the pins essential either for MCU operation or Pickit3 programmer-based programming:

  1. Pin 1 houses the MLCR/VPP, serving as a microchip reset mechanism.
  2. Pins 11 and 32, designated as VDD, necessitate a voltage range of 3.3V to 5V for proper functioning.
  3. Pins 12 and 31, denoted as VSS, are connecting to the ground
  4. To establish a connection with the Pickit3 programmer, pins 40 and 39 host PGD and PGC, respectively.
  5. Pins 13 and 14, namely OSC1 and OSC2, deliver a stable clock signal to the microcontroller. When utilizing the Pickit3 programmer, connecting these pins is unnecessary, thanks to the internal oscillator within the programmer facilitating MCU programming.

The exact method to program with your PICKIT3 programming tool, can be found here.

Pin diagram of the PIC16F877A; Programming pins
Pin diagram of the PIC16F877A; Programming pins
Pickit3 programming pins
Pickit3 programming pins

Port structure in the PIC16F877A

The PIC16F877A has 5 ports, namely A to E, where each pin can be configured as an input or output. However, it is important to note that not all ports consist of the same number of bits, due to some pins being taken by VSS or VDD, for example. In detail, port A consists of 6 bits, ports B, C, and D have 8 bits, while port E consists of only 3 bits.

Apart from being used for General Purpose Input Output (GPIO), most pins on this MCU have dedicated roles for specific functions. For instance, some pins on port C function as the TX and RX pins for the UART communication module, enabling the transmission and reception of serial data. Additionally, analog input channels for the ADC module on ports A and E can convert analog signals into digital values, opening up opportunities for further processing. When choosing IO pins, check the requirements of your project adequately to make the best possible decisions.

Labeled diagram of the PIC16F877A microcontroller showing all 40 pins with their port names (RA0–RA5, RB0–RB7, etc.), analog inputs, digital I/O, and special functions like USART, SPI, I2C, ADC, and oscillator pins. Useful for hardware design and firmware development in embedded applications.

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.