RSS Daily tech news
  • The invisible plastic threat you can finally see
    Researchers in Germany and Australia have created a simple but powerful tool to detect nanoplastics—tiny, invisible particles that can slip through skin and even the blood-brain barrier. Using an "optical sieve" test strip viewed under a regular microscope, these particles reveal themselves through striking color changes.
  • Scientists watch an atomic nucleus flip in real time
    Scientists at Delft University of Technology have managed to watch a single atomic nucleus flip its magnetic state in real time. Using a scanning tunneling microscope, they indirectly read the nucleus through its electrons, finding the nuclear spin surprisingly stable for several seconds. This “single-shot readout” breakthrough could pave the way for manipulating atomic-scale quantum […]
  • A simple metal could solve the world’s plastic recycling problem
    Scientists at Northwestern University have developed a groundbreaking nickel-based catalyst that could transform the way the world recycles plastic. Instead of requiring tedious sorting, the catalyst selectively breaks down stubborn polyolefin plastics—the single-use materials that make up much of our daily waste—into valuable oils, waxes, fuels, and more.
  • A strange quantum effect could power future electronics
    Rice University physicists confirmed that flat electronic bands in kagome superconductors aren’t just theoretical, they actively shape superconductivity and magnetism. This breakthrough could guide the design of next-generation quantum materials and technologies.
  • Room-temperature quantum breakthrough freezes motion without cooling
    ETH Zurich scientists have levitated a tower of three nano glass spheres using optical tweezers, suppressing almost all classical motion to observe quantum zero-point fluctuations with unprecedented precision. Achieving 92% quantum purity at room temperature, a feat usually requiring near absolute zero, they have opened the door to advanced quantum sensors without costly cooling.
  • Tiny gold “super atoms” could spark a quantum revolution
    Scientists have found that microscopic gold clusters can act like the world’s most accurate quantum systems, while being far easier to scale up. With tunable spin properties and mass production potential, they could transform quantum computing and sensing.
Educational graphic showing the analog-to-digital conversion (ADC) process using the PIC16F877A microcontroller. On the left is a graph of a smooth analog voltage waveform sampled at discrete points (shown as red dots), and on the right is the PIC16F877A chip with MPLAB X IDE branding. The image illustrates how analog voltages are digitized for processing in microcontroller-based systems.

PIC16F877A Analog to Digital Converter (ADC)

The ADC module in microcontrollers indeed allows them to interface with the analog world by converting continuous analog signals into discrete digital values. This capability is crucial for various applications such as sensing, control systems, and communication. It is distinct from PWM (Pulse Width Modulation), which uses discrete pulses to ...
Graphical illustration of PWM signal showing narrow and wide pulses with varying duty cycles. Includes a 10V signal graph, labels for voltage levels, and mentions PIC16F877A microcontroller and MPLAB X IDE.

Using PWM in PIC16F877A

Digital signals (0 or 1) and analog signals (range of values) are both used in electronics. Analog inputs can be converted to digital through an ADC. To control analog devices with a microcontroller, DACs are used but they're costly and space-consuming. PWM (Pulse Width Modulation) is a cost-effective technique that ...
Educational slide introducing Timer2 of the PIC16F877A microcontroller. It includes a stopwatch icon with the phrase “Alarm, Timers, how does it work?” on the left, and an image of the PIC microcontroller with MPLAB X IDE branding on the right. The tutorial focuses on Timer2's use in generating precise delays and pulse-width modulation (PWM).

PIC16F877A Timer2 tutorial

The Timer2 module is an 8-bit timer/counter within most PIC MCU devices. Timer2 can increment up to a value of 255 before it overflows back to zero. Timer2 has other built-in features that make it very useful for many different applications.
Educational slide introducing the Timer1 module of the PIC16F877A microcontroller. The left side shows a stopwatch icon and the question “Alarm, Timers, how does it work?”, while the right side features the microcontroller image and MPLAB X IDE logo. The tutorial focuses on Timer1's role in timing, delays, and interrupts.

PIC16F877A Timer1 Tutorial

The Timer1 module is a 16-bit timer/counter within most PIC MCU devices. Timer1 can increment up to a value of 65535 before it overflows back to zero. Because the timer is built into an 8-bit device, the 16-bit timer register is broken into two 8-bit registers (TMR1L and TMR1H) and ...
Educational slide introducing the use of hardware timers in the PIC16F877A microcontroller. The left side features a stopwatch icon and the question “Alarm, Timers, how does it work?”, while the right side shows the microcontroller and MPLAB X IDE logo. The image sets the stage for learning about Timer0, Timer1, and Timer2 functionality.

PIC Microcontrollers Timers

In this tutorial, we will learn what are "Timers"; we will explain this with examples using the Microcontroller PIC16F877A. For this tutorial is may be helpful to understand the basics of turning an LED on and off, which is explained in one of my previous tutorials on LEDs. In this ...
Educational graphic showing how to interface 4x3 matrix keypads with a PIC16F877A microcontroller. The image includes two physical keypads, a schematic layout of the 4x3 keypad connections, the PIC16F877A chip, and the MPLAB X IDE logo. Text reads "Interfacing PIC16F877A with 4x3 keypads."

Interfacing 4×3 keypads with PIC16F877A

In this tutorial, we will provide an overview of the 4x3 membrane keypad. The keypad serves as a reliable and budget-friendly tool for having inputs in your project. Understanding how to interface with the keypad will prove useful in future projects that require menu selection or similar inputs. Our guide ...
Categories
Instagram