© All rights reserved. Powered by Florisera.

RSS Daily tech news
  • Scientists freeze quantum motion using ultrafast laser trick
    Harvard and PSI scientists have managed to freeze normally fleeting quantum states in time, creating a pathway to control them using pure electronic tricks and laser precision.
  • Researchers develop recyclable, healable electronics
    Electronics often get thrown away after use because recycling them requires extensive work for little payoff. Researchers have now found a way to change the game.
  • Ultra-thin lenses that make infrared light visible
    Physicists have developed a lens with 'magic' properties. Ultra-thin, it can transform infrared light into visible light by halving the wavelength of incident light.
  • Engineers develop self-healing muscle for robots
    Students recently unveiled their invention of a robotic actuator -- the 'muscle' that converts energy into a robot's physical movement -- that has the ability to detect punctures or pressure, heal the injury and repair its damage-detecting 'skin.'
  • Listening to electrons talk
    Researchers present new experimental and theoretical results for the bound electron g-factor in lithium-like tin which has a much higher nuclear charge than any previous measurement. The experimental accuracy reached a level of 0.5 parts per billion. Using an enhanced interelectronic QED method, the theoretical prediction for the g-factor reached a precision of 6 parts […]
  • Waste to foundation: Transforming construction waste into high-performance material
    In a major advancement for sustainable construction, scientists have created a cement-free soil solidifier from industrial waste. By combining Siding Cut Powder and activated by Earth Silica, an alkaline stimulant from recycled glass, scientists produced a high-performance material that meets compressive strength standards exceeding the 160 kN/m construction-grade threshold and eliminates arsenic leaching through calcium […]

Scaling beyond 100nm – Nanoelectronics Era

As silicon and silicon dioxide reach their scaling limits, engineers turn to high-k materials, metal gates, and new device architectures like FinFETs and SOI. These advances define the nanoelectronics era. Yet even FinFETs have limits—pushing research toward carbon nanotube FETs, tunnel FETs, and spin-based devices that could drive future breakthroughs.
Featured image of microelectronic scaling

Scaling of CMOS: Microelectronics era

As CMOS technology shrank below 1 μm in the microelectronics era, high electric fields caused reliability issues like hot carrier effects. Techniques such as LATID and Anti-Punch Through (APT) were introduced to control these effects and extend the performance of shrinking devices.

Scaling of CMOS and its Issues

Dennard scaling revolutionized microelectronics by showing that reducing transistor size and voltage proportionally keeps power density constant. However, real-world limitations like subthreshold slope and interconnect resistance eventually halted its ideal progression, demanding alternative approaches to maintain performance improvements in modern technology nodes.
Fig 18. Several steps more can be done to complete several metal layers for interconnects. The last step in the process is the deposition of the final passivation layer, usually Si3N4 (silicon nitride), deposited by PECVD.

CMOS Process Steps: 3um to 1.25um

CMOS chips are made using a twin-well process, with precise tailoring of each well starting from a lightly doped substrate. Key production steps include using advanced masks, growing silicon oxide and nitride layers, ion implantation for wells, and using the LOCOS technique to isolate chip regions efficiently.

Basic nMOS Technology: Process Steps

NMOS fabrication involves key process steps like substrate selection, isolation, gate formation, and metallization. LOCOS isolation prevents unwanted current flow, while polysilicon gates enhance process stability. Ion implantation controls threshold voltage, ensuring device performance. Learn how NMOS advancements shaped microelectronics until CMOS became the preferred technology.

The Physics and Technology of Intrinsic Semiconductors

Semiconductors are materials with electrical properties between metals and insulators, governed by their band structure. The valence and conduction bands define electron movement, with a band gap influencing conductivity. Intrinsic semiconductors, free of impurities, require energy to excite electrons into the conduction band, enabling current flow. Carriers, including electrons and ...

Majoranas: The Next Step in Quantum Computing

Microsoft’s Azure Quantum team is developing quantum chips using topological qubits, leveraging Majorana zero modes for stability. Their research on superconducting nanowires could accelerate quantum computing advancements. This article explains Majorana physics, its role in quantum systems, and Microsoft’s roadmap for scalable quantum computing, offering insights into this groundbreaking development.

The Physics and Technology of Metals

Understanding the conductivity of metals involves exploring their high electron mobility, Ohm’s law, and quantum mechanical models like Drude and Sommerfeld. This article discusses how metals conduct electricity, the role of energy bands, and how electron interactions shape conductivity, highlighting key concepts like drift velocity, Fermi energy, and relaxation time.
Categories
Instagram
Visual Portfolio, Posts & Image Gallery for WordPress