Beyond Conductivity: Advanced Metal Science
Explore the advanced physics of metals beyond conductivity. Learn about superconductivity, AC conductivity, and electromagnetic interactions.
The Physics and Technology of Metals
Understanding the conductivity of metals involves exploring their high electron mobility, Ohm’s law, and quantum mechanical models like Drude and Sommerfeld. This article discusses how metals conduct electricity, the role of energy bands, and how electron interactions shape conductivity, highlighting key concepts like drift velocity, Fermi energy, and relaxation time.
Tunneling effect at semiconductor/oxide interfaces
Electron tunneling is a phenomenon commonly observed at semiconductor/insulator or metal/insulator interfaces, particularly when the insulating layer is thin, typically a few nanometers thick. To grasp its intricacies, let's simplify the scenario.
What are thyristors and how do they work?
In this article I will discuss what thyristors are and how they work. I will start with the semiconductor structure of a thyristor and use the characteristic V-I curve to explain the three different modes. Subsequently, I will use an two transistor model to explain the thyristor from a different ...
3-phase IGBT-inverter – Working principles
In this article the 3-phase IGBT inverter and its functional operation are discussed. In order to realize the 3-phase output from a circuit employing dc as the input voltage, a 3-phase (IGBT) inverter has to be used. The inverter is build of switching devices, thus the way in which the ...