RSS Daily tech news
  • The invisible plastic threat you can finally see
    Researchers in Germany and Australia have created a simple but powerful tool to detect nanoplastics—tiny, invisible particles that can slip through skin and even the blood-brain barrier. Using an "optical sieve" test strip viewed under a regular microscope, these particles reveal themselves through striking color changes.
  • Scientists watch an atomic nucleus flip in real time
    Scientists at Delft University of Technology have managed to watch a single atomic nucleus flip its magnetic state in real time. Using a scanning tunneling microscope, they indirectly read the nucleus through its electrons, finding the nuclear spin surprisingly stable for several seconds. This “single-shot readout” breakthrough could pave the way for manipulating atomic-scale quantum […]
  • A simple metal could solve the world’s plastic recycling problem
    Scientists at Northwestern University have developed a groundbreaking nickel-based catalyst that could transform the way the world recycles plastic. Instead of requiring tedious sorting, the catalyst selectively breaks down stubborn polyolefin plastics—the single-use materials that make up much of our daily waste—into valuable oils, waxes, fuels, and more.
  • A strange quantum effect could power future electronics
    Rice University physicists confirmed that flat electronic bands in kagome superconductors aren’t just theoretical, they actively shape superconductivity and magnetism. This breakthrough could guide the design of next-generation quantum materials and technologies.
  • Room-temperature quantum breakthrough freezes motion without cooling
    ETH Zurich scientists have levitated a tower of three nano glass spheres using optical tweezers, suppressing almost all classical motion to observe quantum zero-point fluctuations with unprecedented precision. Achieving 92% quantum purity at room temperature, a feat usually requiring near absolute zero, they have opened the door to advanced quantum sensors without costly cooling.
  • Tiny gold “super atoms” could spark a quantum revolution
    Scientists have found that microscopic gold clusters can act like the world’s most accurate quantum systems, while being far easier to scale up. With tunable spin properties and mass production potential, they could transform quantum computing and sensing.

Category

Illustration of a futuristic battle scene between two armored warriors symbolizing MOSFET and IGBT. The MOSFET side features a sleek, agile figure wielding a glowing sword in a tech-blue environment, while the IGBT side shows a bulky, powerful mech-like figure firing from a heavy arm cannon in an industrial orange setting. The image represents the comparison between MOSFETs and IGBTs in power electronics.
IGBT vs MOSFET: How to Choose the Right Power Switch
This article compares IGBTs and MOSFETs for power electronics applications It covers efficiency trade-offs, conduction and switching losses, voltage/current guidelines, structural differences (such as body...
Featured image from Florisera.com showing various capacitor types and their symbolic representations, likely used to introduce a detailed article on capacitor basics and usage in electronics.
Introduction to capacitors
This tutorial introduces the basics of capacitors, covering their structure, energy storage, and behavior in DC and AC circuits. It explains capacitance, charging/discharging processes, and...
Featured Image of the post on essential tools for electronic hobbyists (2024)
Essential tools for electronic hobbyist (2024)
Lab equipment is essential for home electronics projects. Key tools include a multimeter, soldering station, oscilloscope, and power supply. This guide covers affordable options for...
Illustration of resistors with color bands and a reading example (332M ± 0.5%). The text reads "Resistor color code Online tool" and shows a DIP chip, emphasizing electronics utility and learning.
Resistor color code – Online tool
A resistor is a fundamental two-terminal component used in countless electronic devices to limit or regulate electric current. Resistors are often marked with color bands...
Educational graphic showing the analog-to-digital conversion (ADC) process using the PIC16F877A microcontroller. On the left is a graph of a smooth analog voltage waveform sampled at discrete points (shown as red dots), and on the right is the PIC16F877A chip with MPLAB X IDE branding. The image illustrates how analog voltages are digitized for processing in microcontroller-based systems.
PIC16F877A Analog to Digital Converter (ADC)
The ADC module in microcontrollers indeed allows them to interface with the analog world by converting continuous analog signals into discrete digital values. This capability...
Graphical illustration of PWM signal showing narrow and wide pulses with varying duty cycles. Includes a 10V signal graph, labels for voltage levels, and mentions PIC16F877A microcontroller and MPLAB X IDE.
Using PWM in PIC16F877A
Digital signals (0 or 1) and analog signals (range of values) are both used in electronics. Analog inputs can be converted to digital through an...

Prerequisits

To make it easier, I assume you have a basic knowledge of the following:

  • Basic circuitry knowledge; such as resistors, transistors, diodes, relays.
  • Basic programming knowledge in C; understand what are functions, operators, data types, and more.
  • Digital electronics, such as logic gates.

On some occasions I will explain it from scratch, but to understand everything, it is best to brush up on the basics so that you can follow the tutorials.

Required Software

For these tutorials we use Microchip’s own software package that includes:

  • MPLAB X IDE
  • XC8 Compiler
  • PICKIT3 programmer/debugger

All the tools can be downloaded at the official website of Microchip Technology

Required Hardware

The full tutorial consists of many different types of electrical components, sensors and actuators. It depends completely on your own project what you need. However, in all cases you will need a Pickit3 tool to install the software and you need at least 1 PIC16F877A microcontroller to install it on.